

Welcome to Apache Kibble’s documentation!

Contents:

	Setting up Apache Kibble
	Understanding the Components

	Component Requirements

	Source Code Location

	Installing Kibble

	Docker Image

	Managing Apache Kibble
	Creating an Organisation

	Configuring Data Sources

	Adding New Users

Indices and tables

	Index

	Module Index

	Search Page

Setting up Apache Kibble

Understanding the Components

Kibble consists of three major components:

	
	web application - this is the user facing part of Apache Kibble. Via this

	ui users can create organizations, configure scanners and most importantly
view and analyze the data.

	
	scanners - as the name suggest are application designed to work

	with a specific type of resource (a git repo, a mailing list, a JIRA
instance etc) and push compiled data objects to the Kibble Server.
Some resources only have one scanner plugin, while others may have
multiple plugins capable of dealing with specific aspects of a
resource.

	
	database - an instance of ElasticSearch used by both web application and

	scanners to share the information.

The following diagram shows Kibble architecture:

[image: _images/kibble-architecture.png]

Component Requirements

Server Component

The Kibble Server is a hub for scanners, and as such, is only ever needed on
one machine. It is recommended that, for large instances of kibble, you place
the application on a machine or VM with sufficient resources to handle the
database load and memory requirements.

As a rule of thumb, the Server does not require a lot of disk space
(enough to hold the compiled database), but it does require CPU and RAM.
The scanners require more disk space, but can operate with limited CPU
and RAM.

As an example, let us examine the Apache Kibble demo instance:

	100 sources (git repos, mailing lists, bug trackers and so on)

	3,5 million source objects currently (commits, emails, tickets etc)

	10 concurrent users (actual people uing the web UI)

The recommended minimal specs for the Server component on an instance of
this size would be approximately 4-8GB RAM, 4 cores and at least 10GB
disk space. As this is a centralized component, you will want to spec
this to be able to efficiently deal with the entire database in memory
for best performance.

Scanner Component

The scanner components can either consist of one instance, or be spread
out in a clustered setup. Thus, the requirements can be spread out on
multiple machines or VMs. Scanners will auto-adjust the scanning speed
to match the number of CPU cores available to it; a scanner with two
cores available will run two simultaneous jobs, whereas a scanner with
eight cores will run eight simultaneous jobs to speed up processing.
A scanner will typically require somewhere between 512 and 1GB of memory,
and thus can safely run on a VM with 2GB memory (or less).

Source Code Location

Apache Kibble does not currently have any releases.
You are however welcome to try out the development version.

For the time being, we recommend that you use the main branch for
testing Kibble. All source code can be found in our repository at:
https://github.com/apache/kibble

Installing Kibble

Pre-requisites

Before you install the Kibble, please ensure you have the
following components installed and set up:

	Python 3.8

	git binaries (GPL License)

	cloc version 1.76 or later (GPL License)

	An ElasticSearch instance, version 6.x or newer (5.x is supported for
existing databases, but not for new setups). Does not have to be on
the same machine, but it may help speed up processing.

	A web server of your choice (Apache HTTP Server, NGINX, lighttp etc)

Configuring and Priming the Kibble Instance

Once you have the components installed and Kibble downloaded, you will
need to prime the ElasticSearch instance and create a configuration file.

To install kibble do the following

git clone https://github.com/apache/kibble.git
cd kibble
pip install .

As a good practice it is recommended to use virtual environment for installation.

Once kibble is installed you may wish to adjust the kibble.ini configuration
file, especially the elasticsearch section which is required to connect to database.

Then you can run the following command to configure the database and create initial
administrator account for the UI:

kibble setup --autoadmin --skiponexist

Setting up the Web UI

Once you have finished the initial setup, you will need to enable the
web UI. Kibble is built as a WSGI application, and as such you can
use mod_wsgi for apache, or proxy to Gunicorn. In this example, we will
be using the Apache HTTP Server and proxy to Gunicorn:

	Make sure you have mod_proxy and mod_proxy_http loaded (on
debian/ubuntu, you would run: a2enmod proxy_http)

	Set up a virtual host in Apache:

<VirtualHost *:80>
 # Set this to your domain, or add kibble.localhost to /etc/hosts
 ServerName kibble.localhost
 DocumentRoot /var/www/kibble/ui/
 # Proxy to gunicorn for /api/ below:
 ProxyPass /api/ http://localhost:8000/api/
</VirtualHost>

	Launch gunicorn as a daemon on port 8000 (if your distro calls
gunicorn for Python3 gunicorn3, make sure you use that instead):

cd /var/www/kibble/api/
gunicorn -w 10 -b 127.0.0.1:8000 -t 120 -D kibble.api.handler:application

Once httpd is (re)started, you should be able to browse to your new
Kibble instance.

Configuring a Scanners

Scanners are configured via kibble.ini configuration file.

Remember that the scanner must have enough disk space to fully store
any resources you may be scanning. If you are scanning a large git repository,
the scanner should have sufficient disk space to store it locally.

If you plan to make use of the optional text analysis features of
Kibble, you should also configure the API service you will be using
(Watson/Azure/picoAPI etc).

Balancing Load Across Machines

If you wish to spread out the analysis load over several machines/VMs,
you can do so by specifying a scanner.balance on each node. The balance
directive uses the syntax X/Y, where Y is the total number of nodes in
your scanner cluster, and X is the ID of the current scanner. Thus, if
you have decided to use four machines for scanning, the first would have
a balance of 1/4, the next would be 2/4, then 3/4 and finally 4/4 on the
last machine. This will balance the load and storage requirements evenly
across all machines.

Running a Scan

Once you have both scanners and the data server set up, you can begin
scanning resources for data. Please refer to Configuring Data Sources
for how to set up various resources for scanning via the Web UI.

Scans can be initiated manually, but you may want to set up a cron job to
handle daily scans of resources. To start a scan on a scanner machine,
run the following:

kibble scan

This will load all plugins and use them in a sensible order on each
resource that matches the appropriate type. The collected data will be
pushed to the main data server and be available for visualizations
instantly.

It may be worth your while to run the scanner inside a timer wrapper,
as such: time kibble scan in order to gauge the
amount of time a scan will take, and adjusting your cron jobs to match
this.

Docker Image

If you want to spin up a development instance of Apache Kibble you can do:

docker-compose -f docker-compose-dev.yaml run kibble setup --autoadmin --skiponexist
docker-compose -f docker-compose-dev.yaml up ui

The ui should be available under http://0.0.0.0:8000 or http://localhost:8000.
To log in you can use the dummy admin account admin@kibble and password kibbleAdmin.

You can also start only the API server:

docker-compose -f docker-compose-dev.yaml up api

To trigger scanners run:

docker-compose -f docker-compose-dev.yaml run kibble scan

Managing Apache Kibble

Creating an Organisation

The first thing you will need to set up, in order to use Kibble, is an
organisation that will contain the projects you wish to survey. You can
have multiple organisations in Kibble, and all organisations will be
scanned, but the UI will only display statistics for the current
(default) organisation you are using. You may switch between
organisations at your leisure in the UI.

To create your first organisation:

	Go to the “Organisation” tab in the top menu

	Locate the Create a new organisation` field set

	Enter the details required for the new organisation

This will set up a new organisation and set it as your default (current)
one.

Once an organisation has been created, you can then add resources and
users to it.

Configuring Data Sources

After you have created an organisation, you can add sources to it.
A source is a destination to scan; it can be a git repository, a
JIRA instance, a mailing list and so on. To start adding sources, click
on the Sources tab in the left hand menu on the Organisation page.

With all resource types, you can speed up things by adding multiple
sources in one go by simply adding one source per line in the source
text field.

The currently supported resource types are:

	GitHub

	This resource consists of GitHub repositories as well as issues/PRs
that are contained within. Currently, you will need to add the full
URL to the repo, including the .git part of it, such as:
https://github.com/apache/clerezza.git.
NOTE: If you intend to use more than 60 API calls per hour, which
you probably do, you will need to add the credentials of a GitHub
user to the source, in order to get a higher rate limit of 6,000 API
calls per hour. You may use any anonymous account for this.

	Git

	This is a plain git repository (such as those served by the standard
git daemon), and only scans repositories, not PRs/Issues. If basic
auth is required, fill our the user/pass credentials, otherwise leave
it blank.

	PiperMail

	This is the standard MailMan 2.x list service. The URL should be the
full path to the directory that shows the various months

	Pony Mail

	This is a Pony Mail list. It should be in the form of
list.html?foo@bar.baz and you should include a session cookie in
order to bypass email address anonymization where applicable. If the
Pony Mail instance does not apply anonymization, you may leave the
cookie blank.

	Gerrit

	This is a gerrit code review resource, and will scan for tickets,
authors etc.

	BugZilla

	This is a BugZilla ticket instance. You should add one source for
each BugZilla project you wish to scan. It should point to the
JSONRPC CGI file followed by the project you wish to scan.
If you wish to just add everything as one source,
you can do so by pointing it at jsonrpc.cgi * which will scan
everything in the BugZilla database. If you want to be able to
look at individual projects, it’s recommended that you scan them
individually.

	JIRA

	This is a JIRA project. Most JIRA instances will require the login
credentials of an anonymous account in order to perform API calls.

	Twitter

	This is a Twitter account. Currently not much done there. WIP.

	Jenkins CI

	This is a Jenkins CI instance. One URL is required, and all sources
will be scanned.

	Buildbot CI

	This is a Buildbot instance. One URL is required, and all sources
will be scanned in one go.

Once you have added the resource URLs you wish to analyse, you
can obtain data by following the instructions in the chapter
Running a Scan.

Adding New Users

MORE TODO

Index

Use Cases

Add an Organisation

This use case describes the process of adding an organisation

	Actors:

	User

	Precondition:

	User is logged in

	Flow of Events:

	
	The use case starts when the user is on the Organisation tab.

	The system loads any previously created organisations and the form to create a new organisation

	The user can enter an organisation name, description, and ID.

	The system will verify the information.

	The system will add the new organisation.

	The system will then display the new organisation along with any existing organisations.

	Exception Scenario:

	The user does not enter an organisation name or description.

	Post Conditions:

	The user creates the organisation or leaves the page.

Add a View

This use case describes the process of adding a view to an organisation

	Actors:

	User

	Precondition:

	User is logged in and has an organisation created

	Flow of Events:

	
	The use case starts when the user is on the Views tab.

	The user will click on the “Create a new view” button.

	The system loads the form to create a new view.

	The user will information needed to create the view.

	The system will verify the information.

	The system will add the new view.

	The system will then display the new view along with any existing views.

	The user with then be able to edit or delete the view.

	Exception Scenario:

	The user does not enter a view name.

	Post Conditions:

	The user creates the source or leaves the page.

Add a Source

This use case describes the process of adding a source to an organisation

	Actors:

	User

	Precondition:

	User is logged in and has an organisation created

	Flow of Events:

	
	The use case starts when the user is on the Sources tab.

	The system loads any existing sources and the form to create a new source.

	The user will select a source type from the list provided.

	The user will enter a source URL/ID and a username and password if needed.

	The system will verify the information.

	The system will add the new source.

	The system will then display the new source along with any existing sources.

	The user with then have to run the kibble scanner to process the new source.

	Exception Scenario:

	The user does not enter a source URL/ID.

	Post Conditions:

	The user creates the source or leaves the page.

Add a User

This use case describes the process of adding a user to an organisation

	Actors:

	User

	Precondition:

	User is logged in and has an organisation created

	Flow of Events:

	
	The use case starts when the user is on the Users tab.

	The system loads the form to invite a new member and the current membership of the organisation.

	The user will enter the email address of a user.

	The system will verify the information.

	The system will add the user to the organisation’s membership.

	Exception Scenario:

	The user enters a user that does not exist.

	Post Conditions:

	The user invites a member or leaves the page.

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/kibble-logo.png

_static/up-pressed.png

_static/comment-bright.png

_images/kibble-architecture.png
Apache Kibble

webserver Apache Kibble Scanners

user

(reverse proxy)

elasticsearch

: N
kibble.yaml

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Apache Kibble’s documentation!

 		
 Setting up Apache Kibble

 		
 Understanding the Components

 		
 Component Requirements

 		
 Server Component

 		
 Scanner Component

 		
 Source Code Location

 		
 Installing Kibble

 		
 Pre-requisites

 		
 Configuring and Priming the Kibble Instance

 		
 Setting up the Web UI

 		
 Configuring a Scanners

 		
 Balancing Load Across Machines

 		
 Running a Scan

 		
 Docker Image

 		
 Managing Apache Kibble

 		
 Creating an Organisation

 		
 Configuring Data Sources

 		
 Adding New Users

_static/images/kibble-architecture.png
Apache Kibble

webserver Apache Kibble Scanners

user

(reverse proxy)

elasticsearch

: N
kibble.yaml

_static/images/kibble-logo.png

