
Apache Kibble Documentation
Release 0.1

The Apache Kibble Community

Oct 24, 2020

Contents:

1 Setting up Apache Kibble 3
1.1 Understanding the Components . 3
1.2 Component Requirements . 3
1.3 Source Code Location . 5
1.4 Installing the Server . 5
1.5 Installing Scanners . 6
1.6 Running a Scan . 7

2 Managing Apache Kibble 9
2.1 Creating an Organisation . 9
2.2 Configuring Data Sources . 9
2.3 Adding New Users . 10

3 Indices and tables 11

i

ii

Apache Kibble Documentation, Release 0.1

Contents: 1

Apache Kibble Documentation, Release 0.1

2 Contents:

CHAPTER 1

Setting up Apache Kibble

1.1 Understanding the Components

Kibble consists of two major components:

The Kibble Server (kibble) This is the main database and UI Server. It serves as the hub for the scanners to connect
to, and provides the overall management of sources as well as the visualizations and API end points.

The Kibble Scanner Applications (kibble-scanners) This is a collection of scanning applications each designed to
work with a specific type of resource (a git repo, a mailing list, a JIRA instance etc) and push copmpiled data
objects to the Kibble Server. Some resources only have one scanner plugin, while others may have multiple
plugins capable of dealing with specific aspects of a resource.

The following diagram shows Kibble architecture:

1.2 Component Requirements

1.2.1 Server Component

As said, the main Kibble Server is a hub for scanners, and as such, is only ever needed on one machine. It is recom-
mended that, for large instances of kibble, you place the application on a machine or VM with sufficient resources to
handle the database load and memory requirements.

As a rule of thumb, the Server does not require a lot of disk space (enough to hold the compiled database), but it does
require CPU and RAM. The scanners require more disk space, but can operate with limited CPU and RAM.

As an example, let us examine the Apache Kibble demo instance:

• 100 sources (git repos, mailing lists, bug trackers and so on)

• 3,5 million source objects currently (commits, emails, tickets etc)

• 10 concurrent users (actual people uing the web UI)

3

Apache Kibble Documentation, Release 0.1

4 Chapter 1. Setting up Apache Kibble

Apache Kibble Documentation, Release 0.1

The recommended minimal specs for the Server component on an instance of this size would be approximately 4-8GB
RAM, 4 cores and at least 10GB disk space. As this is a centralized component, you will want to spec this to be able
to efficiently deal with the entire database in memory for best performance.

1.2.2 Scanner Component

The scanner components can either consist of one instance, or be spread out in a clustered setup. Thus, the requirements
can be spread out on multiple machines or VMs. Scanners will auto-adjust the scanning speed to match the number
of CPU cores available to it; a scanner with two cores available will run two simultaneous jobs, whereas a scanner
with eight cores will run eight simultaneous jobs to speed up processing. A scanner will typically require somewhere
between 512 and 1GB of memory, and thus can safely run on a VM with 2GB memory (or less).

1.3 Source Code Location

Apache Kibble does not currently have any releases. You are however welcome to try out the development version.

For the time being, we recommend that you use the master branch for testing Kibble. This applies to both scanners
and the server.

The Kibble Server can be found via our source repository at https://github.com/apache/kibble

The Kibble Scanners can be found at https://github.com/apache/kibble-scanners

1.4 Installing the Server

1.4.1 Pre-requisites

Before you install the Kibble Server, please ensure you have the following components installed and set up:

• An ElasticSearch instance, version 6.x or newer (5.x is supported for existing databases, but not for new setups).
Does not have to be on the same machine, but it may help speed up processing.

• A web server of your choice (Apache HTTP Server, NGINX, lighttp etc)

• Python 3.4 or newer with installed libraries from setup/requirements.txt

• Gunicorn for Python 3.x (often called gunicorn3) or mod_wsgi

1.4.2 Configuring and Priming the Kibble Instance

Once you have the components installed and Kibble downloaded, you will need to prime the ElasticSearch instance
and create a configuration file.

Assuming you wish to install kibble in /var/www/kibble, you would set it up by issuing the following:

• git clone https://github.com/apache/kibble.git /var/www/kibble

• cd /var/www/kibble

• pip install -r setup/requirements.txt

• python setup/setup.py

This will set up the database, the configuration file, and create your initial administrator account for the UI. You can
later on do additional configuration of the data server by editing the api/yaml/kibble.yaml file.

1.3. Source Code Location 5

https://github.com/apache/kibble
https://github.com/apache/kibble-scanners

Apache Kibble Documentation, Release 0.1

1.4.3 Setting up the Web UI

Once you have finished the initial setup, you will need to enable the web UI. Kibble is built as a WSGI application,
and as such you can use mod_wsgi for apache, or proxy to Gunicorn. In this example, we will be using the Apache
HTTP Server and proxy to Gunicorn:

• Make sure you have mod_proxy and mod_proxy_http loaded (on debian/ubuntu, you would run: a2enmod
proxy_http)

• Set up a virtual host in Apache:

<VirtualHost *:80>
Set this to your domain, or add kibble.localhost to /etc/hosts
ServerName kibble.localhost
DocumentRoot /var/www/kibble/ui/
Proxy to gunicorn for /api/ below:
ProxyPass /api/ http://localhost:8000/api/

</VirtualHost>

• Launch gunicorn as a daemon on port 8000 (if your distro calls gunicorn for Python3 gunicorn3, make sure you
use that instead):

cd /var/www/kibble/api/
gunicorn -w 10 -b 127.0.0.1:8000 handler:application -t 120 -D

Once httpd is (re)started, you should be able to browse to your new Kibble instance.

1.5 Installing Scanners

1.5.1 Pre-requisites

The Kibble Scanners rely on the following packages:

• Python >= 3.4 with the following packages:

• – python3-yaml

• – python3-elasticsearch

• – python3-certifi

The scanners require the following optional components if you wish to enable git repository analysis:

• git binaries (GPL License)

• cloc version 1.76 or later (GPL License)

1.5.2 Configuring a Scanner Node

First, check out the scanner source in a file path of your choosing:

git clone https://github.com/apache/kibble-scanners.git

Then edit the conf/config.yaml file to match both the ElasticSearch database used by the Kibble UI, as well as
whatever file layout (data and scratch dir) you wish to use on the scanner machine. Remember that the scanner must
have enough disk space to fully store any resources you may be scanning. If you are scanning a large git repository,
the scanner should have sufficient disk space to store it locally.

6 Chapter 1. Setting up Apache Kibble

https://github.com/AlDanial/cloc

Apache Kibble Documentation, Release 0.1

If you plan to make use of the optional text analysis features of Kibble, you should also configure the API service you
will be using (Watson/Azure/picoAPI etc).

1.5.3 Balancing Load Across Machines

If you wish to spread out the analysis load over several machines/VMs, you can do so by specifying a scanner.
balance on each node. The balance directive uses the syntax X/Y, where Y is the total number of nodes in your
scanner cluster, and X is the ID of the current scanner. Thus, if you have decided to use four machines for scanning,
the first would have a balance of 1/4, the next would be 2/4, then 3/4 and finally 4/4 on the last machine. This will
balance the load and storage requirements evenly across all machines.

1.6 Running a Scan

Once you have both scanners and the data server set up, you can begin scanning resources for data. Please refer to
Configuring Data Sources for how to set up various resources for scanning via the Web UI.

Scans can be initiated manually, but you may want to set up a cron job to handle daily scans of resources. To start a
scan on a scanner machine, run the following: python3 src/kibble-scanner.py

This will load all plugins and use them in a sensible order on each resource that matches the appropriate type. The
collected data will be pushed to the main data server and be available for visualizations instantly.

It may be worth your while to run the scanner inside a timer wrapper, as such: time python3 src/
kibble-scanner.py in order to gauge the amount of time a scan will take, and adjusting your cron jobs to
match this.

1.6. Running a Scan 7

Apache Kibble Documentation, Release 0.1

8 Chapter 1. Setting up Apache Kibble

CHAPTER 2

Managing Apache Kibble

2.1 Creating an Organisation

The first thing you will need to set up, in order to use Kibble, is an organisation that will contain the projects you wish
to survey. You can have multiple organisations in Kibble, and all organisations will be scanned, but the UI will only
display statistics for the current (default) organisation you are using. You may switch between organisations at your
leisure in the UI.

To create your first organisation:

1. Go to the “Organisation” tab in the top menu

2. Locate the Create a new organisation‘ field set

3. Enter the details required for the new organsation

This will set up a new organisation and set it as your default (current) one.

Once an organisation has been created, you can then add resources and users to it.

2.2 Configuring Data Sources

After you have created an organisation, you can add sources to it. A source is a destination to scan; it can be a git
repository, a JIRA instance, a mailing list and so on. To start adding sources, click on the Sources tab in the left hand
menu on the Organisation page.

With all resource types, you can speed up things by adding multiple sources in one go by simply adding one source
per line in the source text field.

The currently supported resource types are:

GitHub This resource consists of GitHub repositories as well as issues/PRs that are contained within. Currently, you
will need to add the full URL to the repo, including the .git part of it, such as: https://github.com/
apache/clerezza.git. NOTE: If you intend to use more than 60 API calls per hour, which you probably

9

Apache Kibble Documentation, Release 0.1

do, you will need to add the credentials of a GitHub user to the source, in order to get a higher rate limit of 6,000
API calls per hour. You may use any anonymous account for this.

Git This is a plain git repository (such as those served by the standard git daemon), and only scans repositories, not
PRs/Issues. If basic auth is required, fill our the user/pass credentials, otherwise leave it blank.

PiperMail This is the standard MailMan 2.x list service. The URL should be the full path to the directory that shows
the various months

Pony Mail This is a Pony Mail list. It should be in the form of list.html?foo@bar.baz and you should include a session
cookie in order to bypass email address anonymization where applicable. If the Pony Mail instance does not
apply anonymization, you may leave the cookie blank.

Gerrit This is a gerrit code review resource, and will scan for tickets, authors etc.

BugZilla This is a BugZilla ticket instance. You should add one source for each BugZilla project you wish to scan.
It should point to the JSONRPC CGI file followed by the project you wish to scan. If you wish to just add
everything as one source, you can do so by pointing it at jsonrpc.cgi * which will scan everything in the
BugZilla database. If you want to be able to look at individual projects, it’s recommended that you scan them
individually.

JIRA This is a JIRA project. Most JIRA instances will require the login credentials of an anonymous account in
order to perform API calls.

Twitter This is a Twitter account. Currently not much done there. WIP.

Jenkins CI This is a Jenkins CI instance. One URL is required, and all sources will be scanned.

Buildbot CI This is a Buildbot instance. One URL is required, and all sources will be scanned in one go.

Once you have added the resource URLs you wish to analyse, you can obtain data by following the instructions in the
chapter Running a Scan.

2.3 Adding New Users

MORE TODO

10 Chapter 2. Managing Apache Kibble

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

	Setting up Apache Kibble
	Understanding the Components
	Component Requirements
	Source Code Location
	Installing the Server
	Installing Scanners
	Running a Scan

	Managing Apache Kibble
	Creating an Organisation
	Configuring Data Sources
	Adding New Users

	Indices and tables

